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I propose a counterfactual approach to measure proportional treatment effects for

staggeredmultiplicative difference-in-differences (DiD)modelswith PoissonPseudo-Maximum

Likelihood (PPML). Two-way fixed effect (TWFE) linear estimators do not recover DiD

estimates in the presence of a staggered treatment. I show that the wrong comparisons

problem extends to TWFE PPML. I provide evidence that robust estimators for the linear

case do not naturally extend to PPML, as aggregation of lower-level effects is challeng-

ing in the non-linear case. In these settings, my proposed estimator recovers a quantity

analogous to that in the canonical 2-by-2 TWFE PPML model: the percent change of the
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1 Introduction

Applied economists are often interested in studying variables which take only non-negative

values and are non-normally distributed. Such outcomes can include, for example, trade

flows, sales or employment. Public policies or economic shocks generate changes in these

outcomes whose magnitudes often vary across small or large countries, firms, or sectors. In

such cases, researchers are interested in proportional treatment effects, or semi-elasticities:

the percent change in the outcome generated by the treatment. The two-way fixed effects

Poisson Pseudo-MaximumLikelihood (TWFE PPML) estimator presents several advantages

over its log-linearized counterpart (TWFE log-OLS). It recovers a proportional treatment

effect. It can include observations with zero in the outcome, and easily accommodate unit

fixed effects without being subject to the incidental parameters problem (Wooldridge, 1999).

It is suited for settings where the treatment changes the level of the outcome and the variance

of the error term (Silva and Tenreyro, 2006).

When treatment effects are heterogeneous across units, TWFE PPML targets the percent-

age change of the average outcome in the treated group. It computes the multiplicative

Difference-in-Differences, or Ratio-of-Ratios estimator: the ratio of the average outcome be-

fore and after treatment in the treated group, scaled by the change in the average outcome

in the control group. The multiplicative Difference-in-Differences relies on the parallel trend

assumption that the growth rate in the outcome of the two groups should have been the

samewithout treatment.1 In the presence of heterogeneous treatment effects, with staggered

treatment timings, researchers have been recently concernedwith the fact that two-way fixed

effects estimators do not recover desired difference-in-differences estimates of the treatment

effect. Linear estimators use "forbidden comparisons" of successively treated groups, and
1TWFE log-OLS targets the average individual log-points change, an approximation of the outcome percent-

age change across individuals, which implies a different parallel trend.
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weight negatively some treatment effects, potentially yielding estimates of the wrong sign.2

In this paper, I show that the same issue plagues the TWFE PPML estimator. Using a simple

example with two indivuals treated at different times, I show that the estimated quantity dif-

fers significantly from themultiplicativeDiD estimation targetwhen there are heterogeneous

treatment effects across cohorts and time.

Robust estimators have been developed in the linear case, recovering accurate DiD es-

timates for cohort and time cells and aggregating them at a higher scale (Callaway and

Sant’Anna, 2021; Sun and Abraham, 2021; Wooldridge, 2021). These approches do not suit

non-linear estimators such as PPML: they average linear treatment effects, which is more

challenging for non-linear settings. Imagine a researcher who observes employment changes

in two firms A and B, which respectively employ 1 and 2 persons at baseline. If treatment

increases employment by one person in each firm, the average change in percentage would

be (100% + 50%) × (1
2) = +75%. The change of average (and total) employment would be

different: (2+3)−(1+2)
1+2 × 100 = +66%. 3 With linear effects, these quantities would all be the

same, but they differ for non-linear effects such as percentage changes. If we observed in-

stead 3 firms, A, B and C, with A and C being part of region 1 and B of region 2, one could

now compute three quantities reflecting change in employment: the average firm change, the

change of the average (total) employment, and a weighted average of regional employment

changes.

Generalizing, because themultiplicative difference-in-differencesmodel targets the change

of the average treated outcome in percentage, it can usually not be recovered by a weighted

sum of proportional changes at a lower level, lets say on groups g and periods t:

∑
g,t

νgt
E[ygt(1)] − E[ygt(0)]

E[ygt(0)] ̸= E[y(1)] − E[y(0)]
E[y(0)] (1.1)

2See De Chaisemartin and D’Haultfoeuille (2023) for a review of this literature.
3TWFE log-OLS approximates the first quantity, and TWFE PPML targets the second one.
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With νgt the weights associated to group g at time t, unless νgt = Ngt

N
E[ygt(0)]
E[y(0)] , the relative size

of cell g, t in total counterfactual outcome.

In this paper, I develop an estimator that recovers a proportional treatment effect that can

be interpreted as a percentage change of the average outcome, even in staggered settingswith

heterogeneous treatment effects. This estimate can be interpreted as a semi-elasticity, and it

corresponds to the simple setting quantity of interest: the percent change of the average,

or the scaled ATT. This estimator rests on the idea that the TWFE PPML estimator recovers

the ratio-of-ratios in the canonical 2 times and 2 groups setting (Angrist, 2001; Ciani and

Fisher, 2019), and is equivalent to it in this simple setting. Using a parallel trend in growth

rates, a counterfactual outcome can be estimated by multiplying the pre-treatment outcome

of the treated group by the growth rate of the control group’s outcome. My estimator then

recovers a consistent estimated average treatment effect in level and scales it by the predicted

counterfactual average outcome of the treated group. The estimated quantity corresponds

to the growth rate of the average outcome caused by the treatment. I show that in cases

without controls, this estimator can be computed using either a fully saturated model or an

imputation estimator (Wooldridge, 2023; Borusyak et al., 2024).

This paper relates particularly to two recent papers on multiplicative DiD in staggered

treatment settings. Wooldridge (2023) covers the more general case of non-linear DiD esti-

mators in staggered designs. He explains that the model specification should allow for all

margins of treatment heterogeneity that the data structure can identify to avoid the wrong

comparison problem. Such a model corrects the underlying assumptions of the TWFE es-

timator, and recovers estimates of cohort-time treatment effects in level.4 However, the tar-

geted quantity is the treatment effect in level, and not the proportional treatment effect. Tthe

paper does not discuss how to recover it at a higher level than at the cohort-time cell. He fur-
4The paper further shows that for a balanced panel, the TWFE and pooled estimation approaches are equiv-

alent, requiring only to use cohort and time fixed effects which reduces considerably the incidental parameter
problem of non-linear estimators.
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ther provides evidence that a fully saturated model is equivalent to an imputation estimator,

and that it allows to easily estimate linear treatment effects for non-linear models. In this

paper, I clearly state the higher level quantity of interest of proportional treatment effect, and

present a realiable approach to recover it in the staggered setting, building on this imputa-

tion result. My estimator is suited to recover a proportional treatment effect (semi-elasticity)

at any aggregation scale.

Nagengast and Yotov (2025) revisit the semi-elasticity estimates of bilateral trade to re-

gional trade agreement (RTAs): the authors note that most existing estimates are computed

in staggered treatment timing settings. They use Wooldridge (2023)’s fully saturated spec-

ificaton to estimate partial equilibrium changes in trade caused by RTAs. They aggregate

cohort-time proportional treatments effects by computing the weighted average of estimated

model coefficients, weighting cohort-time cells by the share of treated observations. In this

paper, I show that if treatment effect are small, and treatment heterogeneity occurs only

across cohorts and time, this quantity approximates an average proportional treatment ef-

fect. It has then the same interpretation than the quantity of interest of the log-OLS estima-

tor, but not of the PPML estimator (and should generally not be compared with it). I show

that in a more general case, the estimated quantity is closer to a weighted average of the total

percent change within cohorts-time celles, and intermediate quantity between log-OLS and

PPML. Finally, I replicate their estimates on trade with my estimator, and provide close re-

sults: this caused by the percent change of the average and the average percent change are

close quantities in their setting.5

After reminding the 2x2 canonical setting of the multiplicative difference-in-difference

and TWFE PPML, I explore the multiperiod setting and heterogeneous treatment timing

case. This paper is the first to provide a formal evidence of TWFE PPML bias, under the

same conditions as TWFE OLS: heterogeneous treatment effect across time, and staggered
5The initial difference between TWFE log-OLS and TWFE PPML is small.
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treatment timing. I show that in a simple setting with two individuals and three periods,

TWFE PPML downscales a correct treatment effects with the ones of other cells, by analogy

with the negative weights issue of the linear case.

I discuss potential estimates to recover multiplicative difference-in-differences (ratio-of-

ratios) estimates in this setting. As discussed above, I show that estimators aggregating treat-

ment effects estimated separately for each cohort-time cell, such as what is proposed by the

litterature in the linear case, provide different quantities than the initial quantity of interest.

I call this type of approaches "aggregation strategies". I further show that their causal inter-

pretation can be difficult in more general cases. I then provide an estimator recovering the

correct ratio-of-ratios analogous to the canonical setting. I show that this estimator can be

recovered through an imputation process or fully saturated model, but that the imputation

approach can apply to a wider set of cases.

I compare my estimator to the true quantity of interest, against alternative estimators in

simulations of section 4. In staggered treatment timing case, I confirm that TWFE PPML is

biased from the true quantity of interest, even for event study pre-trend coefficients. I show

that the proposed estimator from this paper estimates the true percent change of the average

of the treated sample, even when treatment is heterogeneous across time and individuals.

In contrast, aggregation strategies estimator recovers the average parameter from the model

only when there is no individual heterogeneity within treated cohorts.

I finally applymy estimator to empirical questions from the Economics literature. I revisit

the effect of information exchange on request on bank deposits held in tax havens (Johan-

nesen and Zucman, 2014; Menkhoff and Miethe, 2019), a significant public policy change

at the begining of the 21st century. Researchers have tested whether treaties of exchange of

information on request decrease cross-border deposits owned in tax havens and resulting

from tax evasion. The set-up motivates the use of a nonlinear estimator and the estimation
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of a proportional treatment effect. Bilateral deposits are censored to positive values only,

and country pairs display very different baseline cross-border owned deposits. Treaties are

passed at different times is staggered and likely to be heterogeneous by time and country-

pairs, providing the ideal setting to test for robustness for recent bias of TWFE estimators. I

find that the author’s estimate have a small positive staggered treatment bias. However, the

treated cohort display very large treatment effect heterogeneity, which causes the difference-

in-difference estimates of the log-linearizedmodel (log-OLS) to differ by a lot from the ratio-

of-ratio (PPML) estimates. More precisely, even though treaties tend to cause a large a neg-

ative effect on tax havens deposit on average, their effect on the average volume of deposits

held offshore is weaker as some large country-pairs react positively or do not react bymuch. I

show that in this case, the proposed imputation estimator from this paper recovers a slightly

smaller quantity than the TWFE PPML estimator, indicating that the later attenuates the

magnitude true treatment effect. However, using an aggregation strategy by analogy with

the linear case would strongly overestimate the bias due to staggered treatment. Finally, I

replicate the empirical exercise of Nagengast and Yotov (2025) as described above.

This paper relates to several parts of the literature in applied econometrics. It relates

first to a literature motivating the use of PPML estimators for multiplicative model estima-

tion (Wooldridge, 1999; Silva and Tenreyro, 2006; Cohn et al., 2022; Chen and Roth, 2023)

and to a literature on non-linear difference-in-differences (Angrist, 2001; Ciani and Fisher,

2019; Wooldridge, 2023). I show that PPML estimators can be easily extended to counter-

factual estimators robust staggered treatment timings. I contribute to the literature on the

interpretation of models estimating semi-elasticities (Kennedy, 1981; Jan van Garderen and

Shah, 2002). I show that in the presence of heterogeneous non-linear treatment effects, dif-

ferent aggregation of individual or group level treatment effects yeld semi-elasticities with

very different causal interpretations, some having more micro, intermediate or macro inter-
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pretations. Applied researchers should keep in mind the desired interpretation they wish

to recover. I further contribute to the literature on the estimation of treatment effects with

difference-in-differences in the presence of heterogeneous treatment effects and binary treat-

ment (De Chaisemartin and d’Haultfoeuille, 2020; Callaway and Sant’Anna, 2021; Sun and

Abraham, 2021; Borusyak et al., 2024; De Chaisemartin and D’Haultfoeuille, 2023; Nagen-

gast and Yotov, 2025). I show that the TWFE PPML estimator is biased in the staggered case,

with some treatment effect scaling "negatively" the estimate. The conditions under which

this estimator is biased are the same as for the linear case. I propose a new estimator robust

to staggered treatment bias that recovers the ratio-of-ratios, a quantity similar to one yielded

by the TWFE PPML estimator in the two-by-two canonical case. Finally, I contribute to the

literature on counterfactual estimators (Borusyak et al., 2024; Liu et al., 2024), by developing

a nonlinear counterfactual estimator.

The rest of the paper proceeds as follows. Section 2 presents the 2x2 canonical setting

of multiplicative differences and the two-way fixed effect Poisson Pseudo-Maximum Likeli-

hood estimator (TWFE PPML). Section 3 presents the staggered treatment case, the setting

induced bias of TWFE PPML and a robust estimator to recover the ratio-of-ratios. Section

4 displays simulations comparing existing estimators in the canonical and staggered cases.

Section 5 presents empirical applications. Section 6 concludes.

2 The 2x2 canonical setting

The researcher is interested in a policy or economic change affecting economic units denoted

i observed through time t. There are N units observed. The change (from Dit = 0 to Dit+1 =

1) affects a non-negative outcome of interest yit. We have that the realized outcome yit =

Dityit(1) + (1 − Dit)yit(0), with yit(1) and yit(0) the potential outcomes. In the canonical set-

up, there are two groups of units g = 0, 1, at two periods t = 0, 1. Group 1 is treated at period
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1 (i.e., the policy is implemented), and group 0 is never treated.

2.1 Quantity of interest and identification

In the case of multiplicative models, the researcher is often interested in the proportional

treatment effect. The multiplicative difference-in-difference targets (Angrist, 2001):

E[yigt(1)|D = 1] − E[yigt(0)|D = 1]
E[yigt(0)|D = 1] = ATT

E[y1(0)|D = 1] = PTT (2.1)

This quantity is the change in the outcome induced by the treatment among the treated, or

theATT, scaled by the non-treated outcome. It is the change of the expected outcome variable

in percentage of the expected outcome in the absence of treatment: a semi-elasticity.6

2.1.1 Identifying assumptions

E[y1(1)|D = 1] can be directly estimated from coresponding moments in the data, but not

E[y1(0)|D = 1] which is by definition never observed. Further assumptions allow estimating

the ATT and PTT.

A1: No anticipation assumption On average, in the eventually treated group, there are no

anticipatory changes that affect the potential outcomes before the intervention.

E[y0(1) − y0(0)|D = 1] = 0 (2.2)

A2: Multiplicative parallel trend assumption (MPT) This assumption states that in the

absence of treatment, changes in percentages of expected outcomes should have been the

same in the two groups. The averages of the two groups would have shown the same growth
6This is also a quantity that Chen and Roth (2023) advise to target when the researcher wants to include

zeros and recover a proportional treatment effect.
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in the absence of treatment.7

E[y1(0)|D = 1]
E[y0(0)|D = 1] = E[y1(0)|D = 0]

E[y0(0)|D = 0] (2.3)

If it holds conditionally to some covariates Xit:

E[y1(0)|D = 1, X]
E[y0(0)|D = 1, X] = E[y1(0)|D = 0, X]

E[y0(0)|D = 0, X] (2.4)

2.1.2 Identification

E[y1(0)|D = 1] can be expressed as a function of terms that can be estimated using the mul-

tiplicative parallel trend assumption (A.2):

E[y1(0)|D = 1] = E[y1(0)|D = 0] × E[y0(0)|D = 1]
E[y0(0)|D = 0]

We use (2.3) in (2.1) and recover the PTT expressed as a Ratio-of-Ratios (by analogy to a

difference-in-differences in the linear case):

PTT = E[y1(1)|D = 1]
E[y0(0)|D = 1]/

E[y1(0)|D = 0]
E[y0(0)|D = 0] − 1 (2.5)

The expression of the ATT follows:

ATT = E[y1(1) − y1(0)|D = 1] = E[y1(1)|D = 1] − E[y1(0)|D = 0] × E[y0(0)|D = 1]
E[y0(0)|D = 0] (2.6)

2.2 Estimation

2.2.1 Corresponding sample moments

The PTT and ATT can be estimated from their corresponding sample moments. With Gi a

binary variable taking the value 1 if the individual i belongs to the treated group, and yit the

outcome of i at time t, the proportional treatment effect is estimated by computing a ratio of
7This assumption is also called the index parallel trend assumption by Wooldridge (2023).
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ratios (RoR), relying on the multiplicative parallel trend assumption:

R̂oR =

∑n

i=1 Gi(yi,1)∑n

i=1 Gi∑n

i=1 Gi(yi,0)∑n

i=1 Gi

/

∑n

i=1(1−Gi)(yi,1)∑n

i=1(1−Gi)∑n

i=1(1−Gi)(yi,0)∑n

i=1(1−Gi)

− 1

=
∑n

i=1 Gi(yi,1)∑n
i=1 Gi(yi,0)

/

∑n
i=1(1 − Gi)(yi,1)∑n
i=1(1 − Gi)(yi,0)

− 1

(2.7)

When N grows, this is a consistent estimator of the PTT. And τ̂ estimates the ATT:

τ̂ =
∑n

i=1 Gi(yi,1)∑n
i=1 Gi

−

∑n

i=1(1−Gi)(yi,1)∑n

i=1(1−Gi)
×
∑n

i=1 Gi(yi,0)∑n

i=1 Gi∑n

i=1(1−Gi)(yi,0)∑n

i=1(1−Gi)

τ̂ = 1∑n
i=1 Gi

( n∑
i=1

Gi(yi,1) −
∑n

i=1(1 − Gi)(yi,1)∑n
i=1(1 − Gi)(yi,0)

×
n∑

i=1
Gi(yi,0)

)
(2.8)

In the right part of this expression, the average outcome of the treated group in period 0 is

multiplied by the growth rate of the non-treated group between the two periods.

2.2.2 Equivalence of TWFE PPML and ROR estimator

In the linear canonical setting, there is a direct equivalence between the moments used and

the recovered difference-in-differences and TWFEOLS estimated coefficients. A similar anal-

ogy holds in the multiplicative model case, and TWFE PPML, which recovers the RoR (Ciani

and Fisher, 2019; Chen and Roth, 2023). The TWFE PPML estimator maximizes a quasi-log-

likelihood based on the following conditional mean:

E[yit|Dit] = exp(αi + βt + δDit) (2.9)

In the canonical setting, we have:

exp(δ̂P P ML) − 1 =
∑n

i=1 Gi(yi,1)∑n
i=1 Gi(yi,0)

/

∑n
i=1(1 − Gi)(yi,1)∑n
i=1(1 − Gi)(yi,0)

− 1 (2.10)

The same quantity as in (2.7) that converges in probability, under the identification as-

sumptions, to the quantity of interest (2.1).
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2.2.3 Structural modeling approach

Structural modeling comes naturally from equation 2.9, potentially allowing for δi heteroge-

neous treatment effects. The researcher observes:

yit = exp(αi + βt + δiDit)ηit (2.11)

With ηigt captures remaining individual-time varying heterogeneity such that E[ηit|Dit] = 1.

Using model 2.11 notations, another version ot the parallel trend assumption is:

E[yit(0)|Dit] = exp(αi + βt), ∀(i, t) (2.12)

In case of homogeneous treatment effect across individuals, the quantity of interest 2.1 cor-

responds to exp(δ) − 1 from our model. The model can also be extended to include a vector

of covariates Xit: E[yit|Dit] = exp(αi + βt + δiDit + X ′
itγ).

2.3 Difference with log-linear DiD

Researchers also rely on logarithm transformations of the outcome to estimate semi-elasticities.

The log-linear DiD differs from the multiplicative DiD on several dimensions. Potential out-

comes are now defined by ln yit = Dit ln yit(1) + (1 − Dit) ln yit(0) and structural modeling

follows: ln yit = αi + βt + δDit + ln ηit.

2.3.1 Quantity of interest

The log-linear DiD targets a different quantity of interest when treatment effects are hetero-

geneous:

ATT = E[ln y1(1)|D = 1] − E[ln y1(0)|D = 1] = E[δi|D = 1] ̸= ln E[exp(δi)|D = 1] (2.13)

The target of the linear model is the average log point change, which corresponds to the av-

erage parameter δi in the structural approach. This is the approximated average percentage
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change when treatment effects δi are small, and not the average individual proportional ef-

fects (Jensen’s inequality). The two model estimation targets are the same only when the

treatment effect is homogeneous: δi = δ, ∀i.

2.3.2 Identification assumption

The no-anticipation assumption is:

E[ln y0(1) − ln y0(0)|D = 1] = 0 (2.14)

The parallel trend assumption:

E[ln y1(0) − ln y0(0)|D = 1] = E[ln y1(0) − ln y0(0)|D = 0] (2.15)

This assumption states that in the absence of treatment, the expected log of the outcome in

the treated group should have changed by the same log points as the non-treated group. The

parallel trend is on the growth of the averages and not on the average growths. There is not

reason why the two should hold at the same time. With more pre-treatment time periods

observed, one can undertake a visual exploration on pre-trends to check which assumption

seems most plausible to hold. In the case of the multiplicative model, the pretrend should

be similar when the researcher plots the logarithm of the average (or total with a balanced

panel) outcome for treated and control groups. In case of the log-linear model, the pretrend

should be similar when the researcher plots the average logarithm of the outcome for treated

and control groups.

Finally, if one follows the structural modeling different assumptions rest on the error

terms. The multiplicative approach assumes that E[ηit|Dit] = 1 while the log-OLS approach

requires that E[εit|Dit] = 0. However εit = ln ηit if there ηit is heteroskedastic and its variance

depends on treatement status, there will usually be that E[εit|Dit] = f(Dit) and log-OLS will

miss its quantity of interest. Conceptually, this means that if the treatment affects both the
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mean of yit and its variance, the log-linear DiDwill aggregate the two (potientially opposite)

effects. This issue is already extensively discussed by Silva and Tenreyro (2006); Ciani and

Fisher (2019); Cohn et al. (2022); Chen and Roth (2023) and I let the reader refer to their

work for more details.

2.3.3 Zeros

Zeros in the outcome yit are notoriously excluded from the estimation sample of the log-linear

DiD. This exclusion is natural from the log-linear model because a proportional change for

the extensive margin is not defined. TWFE PPML solves this issue by estimating a quan-

tity that weights predicted individual proportional changes by their predicted counterfactual

outcome share in total predicted counterfactual outcome:

PTT = E[y(1)|D = 1] − E[y(0)|D = 1]
E[y(0)|D = 1] =

∑
i,t,Dit=1

E(yit(0))∑
i,t,Dit=1 E(yit(0))

(
exp(δit) − 1

)
(2.16)

Intuitivelly, TWFEPPMLprovides small weights to zeros or small observations, because they

have a small contribution to the total outcome and the model predicts small counterfactual

outcomes.8

3 Multiperiod setting and heterogeneous timing

I turn to the multiperiod and multicohort setting. There are now T time periods starting at

t = 1, and G cohorts denoted g, of N units i treated at different times. Cohorts are groups of

units treated at the same time, and g denotes the time of treatment. The never-treated cohort

is denoted g = ∞. The potential outcomes are now defined by yigt = 1{g ≤ t}yigt(1) + (1 −

1{g ≤ t})yigt(0).
8Observations with zero in the outcome will be included in the PPML estimation sample only if the obser-

vation for the same individual in the other period is strictly positive.
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A1: No anticipation assumption On average, among the eventually treated group, there

are no anticipatory changes that affect the potential outcomes before the intervention.

E[ygt(1) − ygt(0)|Dgt] = 0 ∀t < g (3.1)

A2: Multiplicative parallel trend assumption For g ≤ t and g′ > t

E[ygt(0)|Dgt]
E[ygt−1(0)|Dgt−1]

= E[yg′t(0)|Dg′t]
E[yg′t−1(0)|Dg′t−1]

(3.2)

This is equivalent to assuming that in the absence of treatment, the growth rate of the average

outcome in the treated cohort between two time periods would have been the same as in the

non-yet-treated and never-treated cohorts.9

3.1 TWFE PPML bias

The TWFEOLS estimators in amultiperiodmultigroup setting can lead to biased estimates of

the ATT because the model makes too strict assumptions on treatment homogeneity. When

units are treated at different times and treatment effects are heterogeneous across time, the

TWFE estimator makes wrong comparisons between treated and control groups, and esti-

mates a quantity that averages treatment effects with negative weights (De Chaisemartin

and D’Haultfoeuille, 2023).

In a simple example, this problem also arises with TWFE PPML and the multiplicative

DiD. There are two individuals i = A, B observed at three time periods t = 1, 2, 3. Individual

A is treated in period t = 2 and individual B is treated in period t = 3, such that B is the

control group for individual A in t = 2. The conditional mean of the outcome is:

E[yit|Dit] = exp(αi + βt + δitDit)

If treatment effect is homogeneous, there is δA2 = δA3 = δB3 = δ. If we have heterogeneous
9With structural modeling approach: E[yigt(0)|Digt] = exp(αi + βt), ∀(i, g, t).
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treatment effect then δA2 ̸= δA3 ̸= δB3. The quantity of interest is then:

PTT = E[y(1)|D = 1] − E[y(0)|D = 1]
E[y(0)|D = 1] =

∑
i,t,Dit=1

E[yit(0)|D = 1]∑
i,t,Dit=1 E[yit(0)|D = 1]

(
exp(δit) − 1

)

(3.3)

Which is a weighted sum of cohort and time-specific treatment effects exp(δit) − 1. The

weights ωit correspond to the share of the counterfactual outcome in the total size of coun-

terfactual observations.10

Solving the system from the log-likelihood first order conditions (see inAppendix) yields

the TWFE PPML estimator for the proportional treatment effect exp(δ) − 1:

exp(δ̂P P ML) − 1 = yA2(yB1 + yB3) − yB2(yA1 + yA3))
yB2(yA1 + yA3))

(3.4)

With homogeneous treatment effect, using expected values of outcome realization, this quan-

tity should yield:

E[yA2(yB1 + yB3)|Dit] − E[yB2(yA1 + yA3)|Dit]
E[yB2(yA1 + yA3)|Dit]

= exp(δ) − 1 (3.5)

With treatment heterogeneity, the quantity estimated by TWFE PPML becomes:

E[yA2(yB1 + yB3)|Dit] − E[yB2(yA1 + yA3)|Dit]
E[yB2(yA1 + yA3)|Dit]

= exp(δA2) × 1 + exp(δB3 + β3)
1 + exp(δA3 + β3)

− 1 (3.6)

The TWFE PPML recovers here the growth rate of the only available "comparison period"

(t = 2), scaled by the differential in growth rate between the two groups in the second period.

This scaling will be bigger if the common trend in this later period is large (exp(β3) is high).

There is an analogy with the problem encountered in the linear case, with some treatment

effects scaling down the treatment effect, and potentially reverting the sign of the estimated

effect.
10The PPML estimatorweightsmore cellswith large counterfactual outcomes and reducesweights associated

with cells with smaller counterfactual outcomes, which are the most susceptible to display the most extreme
proportional changes.
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3.2 Robust estimators for TWFE PPML

Recent papers solve this issue in the linear case by allowing for the most flexible model

given the data structure (Sun and Abraham, 2021; Borusyak et al., 2024; Wooldridge, 2021).

Wooldridge (2023) extends this idea to the non-linear case. With giq an indicator variable

taking the value one if individual i is treated in period q, one can estimate the model corre-

sponding to this conditional mean using PPML:

E[yit|Dit] = exp
[ T∑

r=q

T −r∑
l=0

δrs

(
Dit × gir × 1{t − r = l}

)
+ αi + βt

]
(3.7)

In this model:

δgt = ln(E[ygt(1)|D = 1]) − ln(E[ygt(0)|D = 1])

⇔ exp(δgt) − 1 = E[ygt(1)|D = 1] − E[yigt(0)|D = 1]
E[yigt(0)|D = 1]

(3.8)

So estimating δgt recovers the estimation target at the cohort-time level: the proportional

treatment effect on cohort g and time t. The researcher is often interested in a more aggre-

gated quantity of interest.

3.2.1 Aggregation estimators in the non-linear case

Robust estimators have been developed for the linear case to recover aggregate treatment

effects (De Chaisemartin and d’Haultfoeuille, 2020; Callaway and Sant’Anna, 2021; Sun and

Abraham, 2021; Borusyak et al., 2024;Wooldridge, 2021). These estimators rely on recovering

treatment effects for correct building blocks (i.e. cohorts-time DiD) and aggregating them

over the desired sample to recover an estimate of the ATT. Given that the models used are

linear, the ATT can be easily retrieved by aggregating linear treatment effects.

Translated in the multiplicative setting, one could also compute the two-by-two estimates

of PTTg,t by group and time-period, and average this effect to recover an aggregate treatment
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effect. This would yield an estimator of the form:

∑
νg,tR̂oRg,t (3.9)

With νg,t a weight associated with observations in g, t, chosen by the researcher depending

on the estimation target.

Nagengast and Yotov (2025) uses the fully interacted model above and follows such an

"aggregation" strategy. Coefficients δgt recover the multiplicative model estimation target for

each cohort-time cell: exp(δ̂P P ML
gt ) − 1 is the multiplicative effect on the average of cohort g

at time t. Their aggregation estimator with the same spirit as the linear case is:

exp
( G∑

g

T∑
t

νg,t(δ̂P P ML
g,t )

)
− 1 (3.10)

Estimation can be easily implemented using the ppmlhdfe Stata command (Correia et al.,

2020) when the number of parameters to estimate gets big: interaction coefficients can be es-

timated as fixed effect, appropriately rescaled and aggregated to recover (3.10). This quantity

is a consistent estimator for:

exp
( G∑

g

T∑
t

νg,t(δg,t)
)

− 1

= exp
( G∑

g

T∑
t

νg,t(log
(E[ygt(1)|D = 1] − E[ygt(0)|D = 1]

E[ygt(0)|D = 1]
)

+ 1)
)

− 1
(3.11)

If treatment is homogeneous within cohort-time cells, i.e. δigt = δgt ∀i, g, t, this estimator

approximates the average log-point change:

exp
( G∑

g

T∑
t

νg,tδgt

)
− 1 = exp

( G∑
g

T∑
t

νg,tE[ln ygt(1) − ln ygt(0)|D = 1]
)

− 1 (3.12)

This is the estimation target of the log-linearmodel.11 As treatment effects are heterogeneous

across cohorts and time, it will be a different quantity than the percentage change in the

average targeted in the canonical case. It should therefore not be compared to TWFE PPML
11The advantage is that it is robust to assuming E[ηigt|D] = 1.
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to assess the bias caused by the staggered treatment, because the two are computing different

quantities.

In the more general case, if we do not constraint treatment effects to be the same within

cohort-time cells (δigt ̸= δgt) the quantity recovered by this estimator might not have an inter-

pretable meaning. In this case, the estimated coefficient δ̂P P ML
g,t will recover the proportional

treatment effect on the average of cell g, t. The interpretation of (3.10) becomes the approx-

imate average over cells of multiplicative treatment effect on the average of cells. This is an

intermediate quantity between the estimated parameter (log-linear DiD) and the estimated

growth rate of the average (ratio-of-ratios). The way those three quantities compare will

depend on the correlation between treatment effects δigt and counterfactual outcomes yigt(0).

If corr(δigt, yigt) > 0, we will have that, in terms of estimation targets:

• log-linearDiD (∼ average% change)<AggregationPPML<Ratio-of-Ratios (% change

of the average).

If corr(δigt, yigt) < 0, we will have that:

• log-linear DiD > Aggregation PPML > Ratio-of-Ratios

If the definition of cohort makes sense from an economic point of view (eg, a cohort is a re-

gion), one can be interested in targeting a quantity of interests that is an average over cohort-

time effects: the average over yearly regional employment change for example. However

inference might depend on the number of cohorts G now rather than on units N . If treat-

ment cohorts groupings do not have a relevant economic meaning, the interpretation of the

aggregation PPML estimate will arbitrarily depend on the structure of the panel and the

treatment timings, and might lack causal interpretation.
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3.2.2 Proposed imputation estimator

This section proposes a new estimator for proportional treatment effects, recovering a semi-

elasticity derived from the ratio-of-ratios estimator. This estimator is robust to any type of

treatment heterogeneity in a staggered treatment setting. It is an imputation estimator in the

spirit Borusyak et al. (2024), based on the idea that one can specify the correct counterfactual

model. Wooldridge (2023) shows that this approach, under some conditions, is equivalent

to the fully interacted model and I derive the equivalent interaction estimator in appendix.

Under our identification assumptions, the expected conditional mean of the counterfac-

tual outcome is: E[yigt(0)|Digt = 1] = exp(αi +βt). The parameters αi and βt can be estimated

on the sample of never-treated and not-yet-treated observations. On this sample, the condi-

tional mean is correctly specified and TWFE PPML consistently estimates each set of fixed

effects. One can then predict the counterfactual outcomes for the treated sample, using esti-

mates of these estimates:

ŷigt(0) = exp(α̂i + β̂t)

Wooldridge (2023) states that, with Ng,t the number of treated observations in cell (g, t):

τ̂g,t = 1
Ng,t

∑
i∈g

yigt(1) − ŷigt(0)

Estimates the ATT in level for cohort g and time t, and can also be recovered by predicting

the treatment average partial effect for cell g, t. Contrary to coefficients δ̂g,t, this is a linear

effect that can be aggregated linearly without loss of interpretability. I recover the average

treatment effect in level on the full treated sample, which is equivalent to computing the

difference between the observed outcome and the predicted one on the treated sample:

τ̂ =
∑

g,t,D=1

Ng,t

ND

τ̂g,t = 1
ND

∑
i,t

Digt(yigt(1) − ŷigt(0)) (3.13)

With ND the size of the total treated sample. To recover the proportional treatment effect, or
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treatment semi-elasticity, this quantity can be scaled by the total counterfactual outcome to

recover the following estimator:

R̂oRimput = τ̂

1
ND

∑
i,t Digtŷigt(0)

=
1

ND

∑
i,t Digtyigt(1)

1
ND

∑
i,t Digtŷigt(0)

− 1 =
∑

i,t Digtyigt(1)∑
i,t Digtŷigt(0)

− 1
(3.14)

This estimator is based on the ratio of the average of observed and counterfactual out-

comes. Its interpretation is similar to the TWFE PPML and RoR estimator in the canonical

setting: the percentage change in the average outcome due to treatment.

When N grows, the numerator converges in probability to the expected value of the

treated outcome in the treated group. The denominator, under the parallel trend assumption,

converges to the expected value of the untreated outcome in the treated group. It is obtained

by multiplying the average outcome of the treated groups in the pre-treatment period by the

growth rate of the non-treated group after treatment.

The ratio of the two should converge in probability to the true PTT when N grows, pro-

vided that the denominator does not reach zero. This is unlikely to take place: the PPML

model only predicts strictly positive values. Moreover for the model to predict counterfac-

tual outcomes very close to zero, it means that the researcher faces a DGP inwhich treatment

affectsmainly the extensivemargin, and therefore ismore suited for a binary outcomemodel.

A panel bootstrap, with resampled units, can be used to recover standard errors for R̂oRimput.

The estimator R̂oRimput can be easily computed for a less aggregated level, such as cohort

or relative time. For example, the change in the average for cohort h would be:

R̂oRimput,h =
∑

i,t Dihtyiht(1)∑
i,t Dihtŷiht(0)

− 1 (3.15)

And the change on the average at relative time to treatment date l:

R̂oRimput,l =
∑

t
1{g=t−l}

Ng,t

∑
i yigt(1)∑

t
1{g=t−l}

Ng,t

∑
i ŷigt(0)

− 1 (3.16)
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To explore potential anticipation effects of the policy, one could compute the "leads" coef-

ficients, either by gradually removing negative relative treatment years from the non treated

sample and constructing R̂oRimput,l for l = −1, −2, ... as in Borusyak et al. (2024).12

3.2.3 Special cases for the imputation estimator

Alternative weighting of quantities and scales The estimator R̂oRimput scales a quantity

called the "simple-weighted ATT" by Callaway and Sant’Anna (2021) by a simple-weighted

counterfactual outcome. One could consider different weighting schemes to apply to both

the numerator and the denominator of the proportional treatment effect estimator. I discuss

two weighting schemes in particular but this discussion can be extended according to the

researcher’s quantity of interest.13

The estimator in 3.14 scales the ATT by the average counterfactual; as such, it gives more

weight to cohorts that are observed for the longest time. One possibility is to compute first

ATT and counterfactual cohort averages, and aggregate cohort effects weighted by the size

of each of them in terms of treated units:

R̂oR
sel

imput =
∑

g
1

Ng

(
1

T −g+1
∑T

t=g
1

Ng,t

∑
i yigt(1)

)
∑

g
1

Ng

(
1

T −g+1
∑T

t=g
1

Ng,t

∑
i ŷigt(0)

) − 1 (3.17)

With Ng the number of units i in cohort g.

Another issue, when plotting event-study types of estimates, is that the difference be-

tween coefficients for two relative times l and l′ captures the treatment dynamic and the

composition effect as some cohorts disappear. An alternative definition for R̂oRimput,l is to

fix the cohort composition at relative time l with a comparison relatie time l′:

R̂oR
bal,l′

imput,l =
∑

t
1{g=t−l}×1{g+l′≤T }

Ng,t

∑
i yigt(1)∑

t
1{g=t−l}×1{g+l′≤T }

Ng,t

∑
i ŷigt(0)

− 1 (3.18)

12If the goal is two compare to other estimator using l = −1 as a reference period, one can use this year of
data to estimate αi for the eventually treated group and the never treated cohort for βt.

13I thank Jonathan Roth for his comments on this. See discussions in Callaway and Sant’Anna (2021) on other
weighting strategies.
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Categorial parallel trends Researchers often choose to specify categorical parallel trends,

or parallel trends holding across some groups of the population. For example, if treated

and control firms are compared over time within the same region or sector. In the TWFE

model, this translates to specifying time fixed effects disaggregated by the desired categories

denoted c:

yigct = exp(αi + βct + δDigt)ηigt

The estimation of the treatment effect in level and counterfactual outcome requires slightly

adjusting the counterfactual model and estimating more parameters. The imputation proce-

dure only requires estimating yict = exp(αi + βct)ηict on the treated sample for pre-treatment

periods and the never-treated to get α̂i and β̂ct. The predicted counterfactual outcome on the

treated sample:

ŷigt(0) = exp(α̂i + β̂ct)

τ̂ =
∑
i∈ω1

yigt(1) − ŷigt(0)

Going through the imputation process is less computationally intensive than the interaction

approach, especially when the number of categories c increases, and is numerically equiva-

lent.

Control variables The imputation process allows for a flexible counterfactual model, as

long as it is correctly specified.14 The researcher assumes the true conditional mean to be:

E[yigt|Digt] = exp(αi + βt + δitDigt + X ′
igtγ) (3.19)

14Note that the equivalence with the interaction approach breaks when introducing time-varying controls.
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With Xigt a set of individual-specific, time-varying variables impacting the outcome yigt. Un-

der the conditional parallel trend (2.4), the counterfactual model can be estimated by:

ŷigt(0) = exp(α̂i + β̂ct + X ′
igtγ̂)

Which requires to estimate α̂i, β̂ct and γ̂ on the sample such that Digt = 0. We recover the

proportional treatment effect then as:

R̂oRimput =
∑

i∈ω1 yigt(1) − ŷigt(0)∑
i∈ω1 ŷigt(0)

= τ̂ imput∑
i∈ω1 ŷigt(0)

Triple differences In a triple difference approach, researchers observe treated cohorts that

differ along two additional dimensions, denoted as j and p, which are used to select control

groups. These dimensions can represent sectors and products, or regions, and are used to

correct the potential bias of a simple difference-in-differences estimator by cancelling out this

bias using a supplementary dimension (Olden and Møen, 2022). The expected conditional

mean takes the following form:

E[yi(jp)gt|G, Dit] = exp(αi + βjt + βpt + δitDigt) (3.20)

The new parallel trend assumption becomes:

E[yi(jp)gt(0)|G] = exp(αi + βjt + βpt) = exp(αi) × exp(βjt) × exp(βpt)︸ ︷︷ ︸
Relative growth rate

(3.21)

Here, exp(βjt) and exp(βpt) denote the relative growth rates associated with the two dimen-

sions. If j is a state and p a product, this assumption states that the relative growth rate

between treated and non-treated products in the treated state should have been the same as

in the non-treated states in the absence of treatment.

Using the imputation approach simplifies the analysis compared to interaction models,

which require interacting all the cohort time interactionswith the p and j dimensions to break

down δgs coefficients. With the imputation approach, the expected outcome yijpgt is estimated
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on the not-yet and never-treated samples as exp(αi+βjt+βpt)ηijt. The imputed counterfactual

outcome ̂yijpgt(0) is then calculated as exp(α̂i + β̂jt + β̂pt). The estimate is recovered as above.

4 Simulations

I simulate data to compare the estimators presented in the previous sections.

4.1 Common treatment timing

4.1.1 Data generating process

I generate a panel of 10,000 individuals observed for three time periods t = 1, 2, 3. The

outcome yit follows a multiplicative data generating process:

yit = exp(αi + βt + δiDit)ηit

With βt the time effects, αi the individual effects, Dit the treatment status and δi the treatment

effect, and ηit a log-normal error term such that E[ηit|Dit] = 1. Individuals are treated in pe-

riod 3, such that treatment timing is homogeneous. I generate some selection into treatment

status, so that I need to implement a difference-in-differences strategy to recover the causal

effect of treatment.

I also introduce heteroskedasticity in the error term as a function of observables: in one

case, variance is a function of individual fixed effects, and in the other, it is a function of

the treatment status. This second case jeopardizes retrieving a causal treatment effect via

log-OLS. Finally, I simulate a homogeneous treatment effect and a case with heterogeneity in

treatment effect across individuals. The average treatment effect is positive as δ > 0 when it

is homogeneous. Heterogeneity across individuals is normally distributed, such that the av-

erage growth rate corresponds to the growth rate of the average. Heterogeneity in treatment

effect allows comparing estimators in the different quantity of interest estimated. The ob-

25



served outcome yit is always strictly positive such that I abstract from the differences caused

by including zeros in the sample. I simulate the data 1000 times.

Table 1 – Common timing: simulation cases

Case exp(V (ηit|.)) − 1 Treatment effect parameter
1 αi δ = 0.31
2 0.2Dit δ = 0.31
3 αi δi = 0.31 + νi, νi ∼ N (0, 0.5)
4 0.2Dit δi = 0.31 + νi, νi ∼ N (0, 0.5)

4.1.2 Simulations results

Table 2 displays the true distribution of the true treatment effects and of the estimators across

simulations. The upper panel displays cases 1 and 2with homogeneous treatment effect, and

the lower panel displays cases 3 and 4 with heterogeneous treatment effect. In those later

case, I provide the distribution of the average parameter exp(δi) − 1 and the true growth rate

of the average PTT = E[yigt(1)|D=1]−E[yigt(0)|D=1]
E[yigt(1)|D=1] . I estimate the treatment effect using TWFE

PPML, the imputation estimator and TWFE log-OLS. Densities of estimators are displayed

in Figure C1a in Appendix.

Two estimators are unbiased and strictly equivalent accross all cases: TWFE PPML and

the imputation estimator. I compare TWFE PPML and TWFE log-OLS in cases 1 and 2. In

case of homogeneous treatment and individual heteroskedasticity, in the left upper panel,

log-OLS is the most efficient unbiased estimator, TWFE PPML displays twice the larger vari-

ance. When I introduce a change in the variance of the error term caused by a change in

treatment, log-OLS estimates display a downward bias, while TWFE PPML and imputation

are unbiased.

Cases 3 and 4 display heterogeneous treatment effects. In both cases, PPML estimates

are quite close to the true growth rate of the average. Estimates are less precise when het-
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Table 2 – 1000 simulations: canonical setting

Homogeneous treatment effect exp(δ) − 1

Case 1
exp(V (ηit|.)) − 1 = αi

Estimator Mean St.D. Min Max

PTT = exp(δ) − 1 0.363 0 0.363 0.363
TWFE PPML/RoR 0.370 0.0810 0.112 0.658

Imputation 0.370 0.0810 0.112 0.658
TWFE log-OLS 0.364 0.0357 0.259 0.475

Case 2
exp(V (ηit|.)) − 1 = 0.2Di

Mean St.D. Min Max

0.363 0 0.363 0.363
0.362 0.0509 0.203 0.543
0.362 0.0509 0.203 0.543
0.293 0.0266 0.200 0.367

Heterogeneous treatment effect exp(δi) − 1

Case 3
exp(V (ηit|.) − 1 = αi

Estimator Mean St.D. Min Max

exp(δi) − 1 0.363 0.0104 0.333 0.398
True PTT 0.545 0.0125 0.508 0.585

TWFE PPML/RoR 0.544 0.0961 0.233 0.981
Imputation 0.544 0.0961 0.233 0.981

TWFE log-OLS 0.363 0.0366 0.258 0.496

Case 4
exp(V (ηit|.)) − 1 = 0.2Di

Mean St.D. Min Max

0.364 0.00991 0.334 0.396
0.545 0.0118 0.505 0.583
0.545 0.0635 0.332 0.768
0.545 0.0635 0.332 0.768
0.294 0.0281 0.195 0.379

eroskedasticity is correlated with individual effects (Case 3) rather than treatment (Case 4).

Turning to TWFE log-OLS, we observe that themodel recovers the exponential of the average

parameter, a quantity that cannot be interpreted in terms of semi-elasticity. The magnitude

of the treatment effect differs by a lot from the PPML estimates and the true growth rate of

the average. Moreover, in case of treatment-related heteroskedasticity (Case 4 in the lower

right panel) there is an added bias.
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4.2 Staggered treatment

4.2.1 Data generating process

I generate a panel of 10,000 individuals observed for fifteen time periods t = 1, ..., 15. The

outcome yigt follows a multiplicative data generating process:

yigt = exp(αi + βt + δitDigt)ηigt

With βt the time effects, αi the individual effects, Digt the treatment status and δit the treat-

ment effect. Finally ηigt a log-normal error term such that E[ηigt|Digt] = 1. The setting gathers

the conditions underwhich the TWFE bias arises. Individuals are treated in different periods

starting at t = 10, such that treatment is staggered, and cohorts are indexed by g. Treatment

effect is heterogeneous by time and individual.

I use two types of treatment heterogeneity. In the first case, heterogeneity depends on

the time t. In the second case, I introduce individual heterogeneity that is normally dis-

tributed across individuals, on top of time heterogeneity. Heterogeneity in treatment effect

is now distributed such that the growth rate of the average outcome is different from the av-

erage growth rate of the outcome due to the treatment for each cell (g, t) Again, I introduce

heteroskedasticity in the error term as a function of observables: in one case variance is a

function of individual fixed effects, and in the other, it is a function of the treatment status.

The observed outcome yigt is always strictly positive such that there is no difference between

estimators driven by zeros in the outcome. I simulate the data 1000 times.

4.2.2 Simulation results

Results of simulations are displayed in table 4. The first two lines of each table panel represent

a different quantity of interest based on the truemodel. The first line displays the exponential

of the average parameter δit minus one, the estimation target of the log-linear DiD, which
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Table 3 – Staggered treatement timing: simulation cases

Case exp(V (ηit|.)) − 1 Treatment effect parameter

1 αi δt = log(|t − 12.5|)

2 0.2Digt δt = log(|t − 12.5|)

3 αi δit = log(|t − 12.5|) + νi, νi ∼ N (0, 0.5)

4 0.2Digt δit = log(|t − 12.5|) + νi, νi ∼ N (0, 0.5)

approximates the average growth rate of the treated outcome. The second line displays the

growth rate of the average treated outcome, which is the proportional treatment effect on

the average (PTT). This is the quantity recovered by the ratio-of-ratios, to which PPML

converges in the canonical setting. I compare five estimators: TWFE PPML, the proposed

imputation estimator, an "aggregation" estimator for PPML based on equation 3.10, TWFE

log-OLS and the log-linear estimator by Borusyak et al. (2024) robust to staggered settings.

Densities of estimators are displayed in Figure C1b in Appendix.

The upper left panel presents the case with time constant heteroskedasticity and treat-

ment heterogeneity by time. Even without treatment-induced heteroskedasticity, the TWFE

log-OLS estimator falls behind all true quantities of interest. It is now lower than exp(δt) − 1

because of the staggered setting bias. I turn to the TWFE PPML estimator: results confirm

that it also misses the multiplicative DiD or RoR estimation target in the staggered setting.

In contrast, the imputation estimator recovers a quantity close to 0.1 percentage points

from the true PTT . In Figure C1b, the kernel density of the estimator over the 1000 simu-

lations is centered around the true growth rate of the average. The aggregation estimator

is below this value, and identifies the true average parameter, such as the estimator from

Borusyak et al. (2024).

In the right upper panel, I introduce treatment-induced heteroskedasticity. The OLS es-
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timator is now taking negative values for a large number of simulations, and the mean is at

-0.00861. In case the true value of the parameter and the growth rate of the average are large

(0.233 and 0.776), using the TWFE log-OLS estimator can lead to statistically non-significant

parameters and potentially negative estimates. The imputation estimator recovers the true

growth rate of the average. The aggregation estimator recovers the average parameter, con-

trary to the estimator from Borusyak et al. (2024) which suffers from the heteroskedasticity

bias.

In the lower panels I introduce normally distributed individual heterogeneity on top of

time heterogeneity. Individual treatment heterogeneity is centered around zero such that the

true parameter average value stays the same. In both cases, only the imputation/interaction

estimators are unbiased estimators of the PTT. Both TWFE estimators are biased. The ag-

gregation estimator is now different from the average parameter. It targets an intermediate

quantity between the average parameter and the growth rate. It averages estimates of true

RoRs at the g, t level, weighting them by the relative size of the population of cell g, t in the

treated sample. The estimator from Borusyak et al. (2024) identifies its quantity of interest

only when there is no heteroskedasticity bias.

30



Table 4 – 1000 simulations: staggered treatment

Heterogeneous treatment effect by time exp(δt) − 1

Case 1
exp(V (ηit|.)) − 1 = αi

Estimator Mean St.D. Min Max

exp(δt) − 1 0.233 0.00354 0.220 0.247
True PTT 0.776 0.0133 0.734 0.824
Imputation 0.780 0.0879 0.398 1.096
Aggregation 0.234 0.0471 0.0721 0.395

Borusyak et al. (2024) 0.233 0.0161 0.178 0.282
TWFE PPML 0.198 0.0567 0.0166 0.470

TWFE Log-OLS 0.0452 0.0125 -0.000729 0.0877

Case 2
exp(V (ηit|.)) − 1 = 0.2Di

Mean St.D. Min Max

0.233 0.00254 0.226 0.240
0.776 0.00941 0.748 0.809
0.775 0.0550 0.559 0.954
0.232 0.0291 0.141 0.332
0.170 0.0121 0.128 0.203
0.194 0.0360 0.0790 0.344

-0.00861 0.00968 -0.0364 0.0215

Heterogeneous treatment effect by time and individuals exp(δit) − 1

Case 3
exp(V (ηit|.)) − 1 = αi

Estimator Mean St.D. Min Max

exp(δit) − 1 0.233 0.00592 0.216 0.251
True PTT 1.011 0.0307 0.909 1.113
Imputation 1.010 0.102 0.432 1.359
Aggregation 0.394 0.0529 0.185 0.592

Borusyak et al. (2024) 0.233 0.0174 0.178 0.295
TWFE PPML 0.340 0.0693 0.121 0.703

TWFE Log-OLS 0.0448 0.0130 0.00833 0.0951

Case 4
exp(V (ηit|.)) − 1 = 0.2Di

Mean St.D. Min Max

0.233 0.00440 0.221 0.247
1.013 0.0228 0.939 1.112
1.016 0.0675 0.770 1.228
0.397 0.0345 0.274 0.494
0.169 0.0146 0.121 0.217
0.340 0.0472 0.164 0.499

-0.00802 0.01000 -0.0350 0.0279

I turn to a dynamic specification to compare estimators. I study them in the full hetero-

geneity case, with treatment-induced heteroskedasticity and heterogeneous treatment effect

across time and individuals (Case 4 of table 4). Figure 1 plots the results of the estimators in

one simulation. All coefficients are expressed relative to t − 1 to ensure that estimators have

a similar reference point (Roth, 2024).15 I estimate leads and lags for the TWFE log-OLS and

PPML, the imputation and interaction estimators and the aggregation estimator. To derive

confidence intervals more easily, I plot log(θl +1) for each estimator with θl being an estimate

of a non-linear treatment effect at l time periods of treatment. This corresponds to estimates
15I do not include the estimator from Borusyak et al. (2024) now as it has a different interpretation of leads

coefficients.
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of δl for TWFE estimators, with l the relative time. Red markers are set for the true value of

the average parameter and the PTTl.

As expected, the imputation estimator is an unbiased estimator of time relative percent-

age changes in the average. It closely matches the true PTTl. The TWFE PPML estimator is

biased downward for first treatment periods. TWFE log-OLS cannot recover the true param-

eter for later time periods. But both TWFE PPML and TWFE log-OLS display false positive

coefficients on pre-trend. The results of Sun and Abraham (2021) that staggered bias con-

taminates TWFE lead coefficients seem to hold for TWFE PPML. TWFE estimators point to

non-existent pre-trends with staggered treatment, by displaying false positive coefficients.

The aggregation parameter recovers an intermediate quantity between the average pa-

rameter and the true treatment semi-elasticity (RoR). It converges to the true RoR in the

later period, when there are fewer treated cohorts: in t = 5, when only the first cohort is

treated, it computes the same quantity as the imputation estimator, because it covers only

one (g, t) cell now. The imputation and aggregation estimators display close to zero and non

statistically significant coefficients for leads.

Figures C2, C3 and C4 in the appendix display event studies for unique simulations gen-

erated in the other cases. In cases 1 and 2, when there is no heterogeneity in treatment effect

within cohort-time cells (in simulations, driven by individual treatment heterogeneity), the

aggregation estimator identifies the average true parameter. In case 3 it computes an interme-

diate quantity between the average true parameter. TWFE log-OLS always fails to identify

the average true parameter, because of either the heteroskedasticity bias or the staggered

treatment timing bias. Estimator from Borusyak et al. (2024) corrects for this bias and fails

with treatment incuded heteroskedasticity. TWFE PPML displays large false-positive pre-

trends and diverges from the true growth rate. Only the imputation estimator identifies the

true growth rate before and after the policy change.
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Figure 1 – Case 4: Event study
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Note: 95% confidence intervals. Case 4: Heteroskedasticity function of treatment status, no individual treatment effect heterogeneity. To
ease the derivation of confidence intervals, I plot log(θl + 1) for each estimator.

5 Applications

5.1 Treaties of exchange of information

Set-up I apply my estimator to a major Public Economics research question: does the ex-

change of information between countries reduce households’ cross-border tax evasion? Menkhoff

and Miethe (2019) and Johannesen and Zucman (2014). Following the G20 2009 summit,

many tax havens were compelled to sign bilateral treaties implementing exchange of infor-

mation on request regarding bank account holders. These treaties, signed for example be-

tween France and Switzerland in 2009, make it mandatory for banks in both countries to

report accounts held by each other’s citizens to the tax authorities of their home countries, if

the latter demand it. The signature and implementation of treaties vary across country pairs.

Using data from the Bank of International Settlements (BIS) from 2003 to 2011Menkhoff and

Miethe (2019) and Johannesen and Zucman (2014) explore whether a treaty signed between
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a tax haven and another country reduces deposits held by citizens of the home country in the

tax haven. This is likely to be the case if those deposits are held for tax or regulation evasion

purposes.

I replicate the findings of Menkhoff and Miethe (2019), as their replication package is

publicly available (Johannesen and Zucman (2014) use a confidential version of the BIS data,

including more Tax Havens). The two papers use the same identification strategy.16 The

authors estimate the following model:

log(Depositijq) = α + βSignedijq + γij + θq + ϵijq (5.1)

With Depositijq the deposits held by citizens of country i in tax haven j at time q. The treat-

ment variable Signedijq takes the value one when a treaty is signed between i and j at time q.

Fixed effects for country pairs γij and time θq are included. The authors use a two-way fixed

effect log-linearizedmodel, using as a control group all non-haven-to-haven dyadswhich did

not sign a treaty during the time frame under study. The authors seek to estimate β which

they interpret as the causal effect of treaties on deposits held in tax havens in percentage.

Results I replicate the strategy under equation (5.1) with five different estimators: the

TWFE log-OLS estimator, the linear estimator from Borusyak et al. (2024), the TWFE PPML

estimator, the proposed imputation estimator, and with a PPML aggregation strategy.

Results are displayed in Table 5. Column (1) presents the replication of Menkhoff and

Miethe (2019) results using theirmethodology. On average, the signature of a treaty reduced

deposits held in the partner tax havens by 31.9%.17 In column (2), I restrict the sample and

remove the few country-pairs that are always treated to avoid forbidden comparisons to this

group. The results remain. In column (3), I use the estimator from Borusyak et al. (2024)
16Menkhoff and Miethe (2019) use a more conservative treatment, building on a few more years of per-

spective on these instruments: they only consider new TIEAs and DTCs implementing the OECD’s banking
transparency standards.

17(exp(−0.384) − 1) × 100 ≈ −31.9
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to recover the log-linear DiD. The effect is slightly bigger than before, indicating that the

staggered treatment biases the TWFE treatment effect estimate upward.

Columns (4), (5), and (6) display the non-linear estimations. In column (5), the TWFE

PPML estimates that treaties signed decreased the average deposits held in tax havens by

13.2%.18 Column (6) implementsmy proposed estimator robust to staggered bias: it recovers

a drop in deposits by 16.5%. The comparison of columns (5)-(6) points to an upward bias

because staggered treatment, as in columns (2)-(3) for the log-linear DiD.

There is a large difference between the results derived from the log-linear difference-in-

differences (OLS) and the ratio-of-ratios (PPML). The difference between columns (1) to (3)

and (5)-(6) comes from the different causal interpretations of the estimates: the approximate

average effect over country-pairs and time (log-linear DiD) and the proportional change in

the average (RoR). The average effect of treaties across country pairs and time is larger that

the effect of the set of treaties on average deposits held in tax havens.

The joint distribution of treatment effects and deposit volumes across treatment cells illus-

trates the treatment effect heterogeneity causing this difference. In FigureD1 in the appendix,

I plot a cohort-time specific coefficient from the full interaction model (such as in equation

3.7). Each coefficient recovers the RoR on the average of cell (ij, q). Cohorts (country-pairs

ij treated at the same time) are displayed in the same color. We observe that even though

cells (ij, q) display a large negative treatment effect on average, most of the cells exhibiting the

strongest effects are small country-pairs in term of volume of tax haven deposits held. On the

contrary, there are some cohorts exhibiting at the same time a weak or positive treatment ef-

fect, and a large volume of tax haven deposits, explaining the lower ratio-of-ratios, or change

in the average.

The result of column (4) goes further in reconciling both results by showing that the ag-

gregation estimator lies between them. It displays the estimate froman aggregation estimator
18(exp(−0.141) − 1) × 100 ≈ −13.2
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used in Nagengast and Yotov (2025). As explained in section 3.2.1 the targeted quantity is

the average PTTg,q over treated (g, q) cells. I estimate that on average, when a group of coun-

tries signs treaties with some tax havens on the same month, their deposits held in these tax

havens drop by 23.9% (average change of the averages).19 This interpretation depends on the

group of country pairs treated together, which is not very informative in this case. I verify

that when corr(βij,q, yij,q) > 0, the aggregation PPML provides a higher estimate than the

log-linear DiD, and smaller than the multiplicative DiD.

Table 5 – Replication - Exchange of Information

Linear estimators Non-linear estimators
TWFE
log-OLS

(replication)

TWFE
log-OLS

Borusyak
et al. (2024)

Aggregation TWFE
PPML

Imputation

(1) (2) (3) (4) (5) (6)
Coef -0.384*** -0.383*** -0.402*** -0.273** -0.141** -0.180**
S.e. (0.09) (0.09) (0.074) (0.11) (0.078) (0.091)
N 17267 16244 16244 16244 16244 16244

Control group All Never treated & Not yet treated

Country-pair FE Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes

Column (1): Replication of Menkhoff and Miethe (2019). Standard errors adjusted for clustering by
country-pairs. Standard errors for the imputation and aggregation estimators are computed through
500 bootstrap replications. No control variables included.

5.2 Gravity: the effect of RTAs

Set-up The second application revisits an important question in International Trade: how

does bilateral trade respond to regional trade agreements (RTA)?Nagengast andYotov (2025)

seek to recover estimates robust to the two-way fixed effect negative weights problem, which

could have plagued estimates from the previous literature.

The RTA estimates are usually based on the structural gravity theoretical framework, ac-

cording to which bilateral trade in value between exporter i and importer j at time t is ruled
19(exp(−0.273) − 1) × 100 ≈ −23.9
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by the following relationship:

Xijt = YitEjt

Yt

(
tijt

ΠitPjt

)1−σ

With Yit and Ejt the output and the expenditure of respectively origin and destination, Yt

total world production, tijt bilateral time varying trade costs, and Πit and Pjt the multilateral

resistance terms. The latter are theoretically grounded terms that solve the system:

Π1−σ
it =

∑
j

(
tijt

Pjt

)1−σ
Ejt

Yt

P 1−σ
jt =

∑
i

(
tijt

Πit

)1−σ Yit

Yt

In this framework, the signature of an RTA between countries i and j will change the bilateral

trade cost tijt at signature time t. The response of bilateral trade will depend on the content

of the RTA and the trade elasticity.

The state-of-the-art specification derived from this framework is:

yij,t = exp {δRTAij,t + πi,t + χj,t + τij + θii,t} × ϵij,t. (5.2)

With yij,t bilateral trade, RTAij,t a binary variable when an RTA is active between i and j

and time t, πi,t, χj,t, τij and θii,t exporter-time, importer-time, dyad and border-time fixed

effects. The exporter-time and importer-time fixed effects will control for multilateral resis-

tance terms and the size of each economy. Bilateral fixed effects control for the time invariant

part of bilateral trade cost, influenced by factors such as distance, language, historical ties, ...

Border time fixed effects account for the international border effect when comparing internal

to international trade flows.

In the trade literature, the model is usually estimated on a matrix of internal and inter-

national trade flows observed every year, with a PPML estimator, while clustering standard

errors at the country-pair level. In this setting, we have (i) staggered RTAs implementation

(ii) different RTAs negotiated, with potentially different content and effects on bilateral trade
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(iii) an interest in expressing treatment as a semi-elasticity.

Nagengast and Yotov (2025) adapt the specification to account for potential bias caused

by the staggered treatment timing. They remove the always treated country pairs from the

control group, and follow Wooldridge (2023), by using a fully interacted specification for

heterogeneous treatment effects:

yij,t = exp
{

T∑
g=q

T∑
s=g

δgsDgsRTAij(g),t(s) + πi,t + χj,t + τij + θii,t

}
× ϵij,t. (5.3)

With g a group of countries pairs signing an RTA at the same time, s the relative time to

treatment, Dgs a binary variable taking the value one for a cohort g treated s years ago, and

δgs the cohort-time specific coefficient capturing treatment effect. To recover an aggregate

treatment effect, the authors use an aggregation strategy:

ˆ̄δ =
T∑

g=q

T∑
s=g

Ngs

ND

δ̂gs,

With Ngs the number of treated observations from cohort g and time s and ND the size of the

treated sample.

Results I replicate the results of Nagengast and Yotov (2025), Table 1 columns (1) and (2),

in columns (1) and (2) of Table 6. In column (3), I use my imputation estimator. In columns

(4) and (5), I use linear estimators for the log-linear specification version of models 5.2 and

5.3: the fixed effects log-OLS and the interacted specification fromWooldridge (2021), which

is robust to staggered treatment timing. The samples are smaller for these last columns be-

cause of zero observations being dropped.

Comparing columns (1) and (2), we observe that the difference between the estimated

semi-elasticities is large: 0.18 from TWFE PPML against 0.463 for the corrected estimate from

Nagengast and Yotov (2025), using an aggregation strategy.20 The authors interpret this gap
20exp(0.166) − 1 ≃ 0.18 and exp(0.381) − 1 ≃ 0.463.
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as caused by the negative weight issue of TWFE PPML. In column (3), my estimator pro-

vides a semi-elasticity of 0.434. This elasticity is close to the one provided by the aggregation

strategy.

The close value provided by those two quantities can be rationalized by comparing esti-

mates with the log-linear estimators. The TWFE log-OLS estimates a semi-elasticity of 0.19,

close to TWFE PPML. Comparing the two quantities, the small initial difference indicates

that the two estimation targets are close to each other. Comparing columns (3) and (5) and

estimators robust to the bias caused by staggered treatment, we find again very close esti-

mates. Taken together, this indicates that the average treatment semi-elasticity (over country

pairs) and the semi-elasticity of the average bilateral trade flows are close quantities in this

setting. 21 The aggregation strategy and the imputation estimator then target quantities that

are close to each other, explaining the comparable estimates.

Table 6 – Replication - Gravity

Non-linear estimators Linear estimators
(replications)

TWFE PPML Aggregation Imputation TWFE
log-OLS

Wooldridge
(2021)

(1) (2) (3) (4) (5)
Coef 0.166*** 0.381*** 0.361*** 0.172*** 0.36***
S.e. (0.05) (0.07) (0.11) (0.04) (0.06)
N 105409 105409 105409 104802 104802

Control group Never treated & Not yet treated

Fixed effects Exporter-Year, Importer-Year, Dyad, Border-Year

Note: Column (1): Standard errors adjusted for clustering by country-pairs. Standard errors for the imputation, aggregation and
Wooldridge (2021) estimators are computed through 500 bootstrap replications.

21Of course, part of the difference between the estimators can be due to either the missing zeros or the het-
eroskedasticity bias (Silva and Tenreyro, 2006).
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6 Conclusion

This paper reconciles two significant empirical issues encountered by applied economists

when estimating treatment effects in non-linearmodels, usingdifference-in-differencesmethod-

ologies. First, the log-OLS estimator is biased in the presence of heteroskedasticity and

treatment-induced changes in outcome variance. Even in the absence of bias, the researcher

could prefer to use PPML because of the underlying parallel trend or the quantity targeted in

the presence of treatment effect heterogeneity. Second, the traditional two-way fixed effects

estimators do not accurately recover difference-in-differences estimates when treatment tim-

ing is staggered and the effect is heterogeneous. I show that this issue extends to two-way

fixed effects PPML.

To reconcile both issues, I propose a novel estimator that recovers of a proportional treat-

ment effect (semi-elasticity) even in cases of staggered treatment timing and heterogeneous

treatment effects. Leveraging the interpretation of the TWFE PPML estimator in the canoni-

cal 2x2 setting, I develop an approach that accurately estimates the ratio-of-ratios, ensuring

an interpretable treatment effect estimates similar to the canonical setting. The specified

model can account for any kind of heterogeneity in the treatment effect, under the paral-

lel trend and no anticipation assumption. Moreover, it can account for a parallel trend as-

sumption conditional on some covariates, or the relative parallel trend of the triple difference

setting.

Through empirical validation and simulations, I compare the proposed estimator to ex-

isting approaches. From simulations with staggered treatment timing and heterogeneous

treatment effects, it appears that the interaction estimator proposed in this paper is the most

suited to recover the correct treatment change in the average. In all studied cases, its den-

sity is centered around the true ratio-of-ratios, the quantity of interest of the 2-by-2 canonical

setting. It is also robust to any type of treatment effect heterogeneity. Using an aggrega-
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tion strategy for PPML, similar to the logic of solutions proposed for the linear case seems

more suited to recover the average parameter when the treatment effect is homogeneous

within cohort-time cells. This quantity is the same target as for the log-linear difference-

in-difference. This aggregation strategy performs better than available log-linear estimators

when there is treatment-induced heteroskedasticity. With more general patterns of treat-

ment effect heteroskedasticity, this strategy will recover an intermediate quantity that might

not have a clear interpretation. It is up to the empirical researcher to think about what is

her preferred quantity to recover. The use of TWFE log-OLS and TWFE PPML is strongly

discouraged in this setting, with the former potentially yielding negative estimates when the

true treatment effect is positive and of a large magnitude.

I apply my estimator to twomajor empirical questions of the Public Economics and Inter-

national Trade literatures. First, I study the setting of Johannesen and Zucman (2014) and

Menkhoff and Miethe (2019). The authors investigate whether bilateral treaties of exchange

of information decreased deposits held in tax havens’ banks. I show that their results are

close to the one estimated while correcting for staggered treatment and using a non-linear

estimator. I show that using a TWFE PPML estimator in their set-up provides a smaller

treatment effect, which is rationalized by the fact that it aggregates differently the strong het-

erogeneity in treatment effects across country pairs. My proposed estimator recovers a closer

estimate to TWFE PPML than an aggregation strategy, showing that even though the treaties

on average decreased deposits held offshore in tax havens, the average volume of deposits

held in tax havens changed by a lower magnitude. Furthermore, by applying the proposed

estimator to the empirical question of cross-border deposit behavior in response to exchange

of information treaties, I showcase its practical relevance to answer empirical questions. Sec-

ond, I revisit the RTA effect on bilateral trade in the setting of Nagengast and Yotov (2025).

I show that in this setting, my estimator confirms the large bias due to staggered treatment
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timing that the authors find, using an aggregation strategy. Moreover, this setting illustrates

a case in which the average percentage change and the change of the average are close.
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Appendix

A. Literature review

Table A1 – Some top 5 papers with difference-in-differences strategy, a staggered treatment and
a proportional treatment effect since 2018

Paper Analysis Outcome Cells Estimator

Azoulay

et al. (2019)

Table 3 Number of publications,

grant awards

Subfield × Year TWFE PPML

Hjort and

Poulsen

(2019)

Tables 2, 3,

7, 8

Internet speed (asinh); Hour-

sworked (asinh); Net firm en-

try (asinh); Employees (as-

inh); Value-dded (asinh)

Grid-cell × Year TWFE OLS

Bailey et al.

(2021)

Figue 6, Ta-

ble 4

Income (log) County × Year TWFE OLS

Fetzer et al.

(2021)

Table 1 Incidents (log+1) District× Time TWFE OLS

Martinez

et al. (2021)

Figure 7.B,

10

Wage earnings of employees,

Self-employment income per

person

Canton × Time TWFE OLS

(scaled post

estimation)

Mirenda

et al. (2022)

Table 3, 7 Revenues (log); Tangible and

intangible assets (log); Wage

bill (log)

Firm × Time TWFE OLS

Atal et al.

(2024)

Figure 4,

Table 2

Drug prices and sales (log) Market × Time TWFE OLS

Miyauchi

(2024)

Table III Sales Growth (Arc-Elasticity) Firm × Time Stacked DiD

OLS

Cont’d on following page
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Table A1, cont’d

Paper Analysis Outcome Cells Estimator

Bau and Ma-

tray (2023)

Table III, IV,

V, Figure 2,

3, 4

Foreign debt, Foreign Spend-

ing, Revenues, Capital,

Wages, MRPK

Firm × Year TWFE log-

OLS

Giroud et al.

(2024)

Table II,

III, IV, V,

VI, VII, IX,

Figure 1

TFP, Employment, Wages,

Number of plants, Number

of patents+1

County × Year Three-way FE

log-OLS

Britto et al.

(2022)

Table I, III,

IV, Figure 3

Employment, Income, Crime Municipality-

industry × Year

TWFE OLS,

rescaled

Cullen and

Pakzad-

Hurson

(2023)

Figure 3, 4,

5, Table I, II,

Employment, wages State × Year TWFE log-

OLS, Stag-

gered robust

log-OLS
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B. Supplementary results

B1 TWFE PPMLMaximum likelihood

Simple case We observe two individuals A and B, at time periods t = 1, 2, 3. Treatment

follows the pattern displayed by Table B1.

Table B1 – Staggered setting - Simple example

E[Yit] i = A i = B
t = 1 exp(αA) exp(αB)
t = 2 exp(αA + β2 + δA2) exp(αB + β2)
t = 3 exp(αA + β3 + δA3) exp(αB + β3 + δB3)

The TWFE PPML estimation by maximum of log-likelihood implies the following first

order conditions: 

∑
i,t,Dit=1(yit − ŷit) = 0

∑
i=j,t(yjt − ŷjt) = 0

∑
i,t=l(yil − ŷil) = 0

Which translates in this system of equation in the simple case in table B1:


yA2 + yA3 + yB3 = exp(α̂A + β̂2 + δ̂) + exp(α̂A + β̂3 + δ̂) + exp(α̂B + β̂3 + δ̂)

yA1 + yA2 + yA3 = exp(α̂A) + exp(α̂A + β̂2 + δ̂) + exp(α̂A + β̂3 + δ̂)

yB1 + yB2 + yB3 = exp(α̂B) + exp(α̂B + β̂2) + exp(α̂B + β̂3 + δ̂)

yA1 + yB1 = exp(α̂A) + exp(α̂B)

yA2 + yB2 = exp(α̂A + β̂2 + δ̂) + exp(α̂B + β̂2)

yA3 + yB3 = exp(α̂A + β̂3 + δ̂) + exp(α̂B + β̂3 + δ̂)
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This yields: 

exp(β̂2 + δ̂) = YA2
exp(α̂A)

exp(α̂A) = (yA1+yA3)×(yA1+yB1)
yA1+yB1+yA3+yB3

exp(α̂B) = (yB1+yB3)×(yA1+yB1)
yA1+yB1+yA3+yB3

yA1 + yB1 = exp(α̂A) + exp(α̂B)

yA2 + yB2 = exp(α̂A + β̂2 + δ̂) + exp(α̂B + β̂2)

exp(β̂3) = yA3+yB3
(yA1+yB1)exp(δ̂)

Quantity of interest If we have, heterogeneous treatment effect δA2 ̸= δA3 ̸= δB3. The

quantity of interest is then:

PTT = E[yit(1)|D = 1] − E[yit(0)|D = 1]
E[yit(0)|D = 1]

=
(1/3)

(
E(yA2(1)) + E(yA3(1)) + E(yB3(1))

)
− (1/3)

(
E(yA2(0)) + E(yA3(0)) + E(yB3(0))

)
(1/3)

(
E(yA2(0)) + E(yA3(0)) + E(yB3(0))

)
=

(
exp(αA + β2 + δA2) + exp(αA + β3 + δA3) + exp(αB + β3 + δB3)

)
(
exp(αA + β2) + exp(αA + β3) + exp(αB + β3)

)
−

(
exp(αA + β2) + exp(αA + β3) + exp(αB + β3)

)
(
exp(αA + β2) + exp(αA + β3) + exp(αB + β3)

)
=

∑
i,t,Dit=1

E(yit(0))∑
i,t,Dit=1 E(yit(0))

(
exp(δit) − 1

)
=

∑
i,t,Dit=1

ωit

(
exp(δit) − 1

)

(.1)

General case In the general case there are N individuals, G cohorts and T time periods.

We estimate the parameters α, β and δ of the model with the correctly specified condi-

tional mean, using TWFE PPML:

E[yigt|Digt] = exp(αi + βt + δDigt)
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The log-likelihod function is:

L(α, β, δ) =
N∑
i

T∑
t

yigt(αi + βt + δDigt) − exp(αi + βt + δDit) (.2)

Which yelds the following first order conditions:



∂L(α,β,δ)
∂δ

= 0 ⇔ ∑N
i

∑T
t Digtyigt − exp(αi + βt + δDigt) = 0

∂L(α,β,δ)
∂αj

= 0 ⇔ ∑T
t (yjgt − exp(αj + βt + δDjgt)) = 0

∂L(α,β,δ)
∂βl

= 0 ⇔ ∑N
i (yigl − exp(αi + βl + δDigl)) = 0

From the first order condition on individual fixed effects, we obtain:

exp(αj) =
∑

t yjgt∑
t exp(βt + δDjgt)

(.3)

Individual fiexed effects can be replaced in the F.O.C., but finding a closed-form solution

for δ implies solving a nonlinear system of β and δ. There is usually no closed form solu-

tion for this type of system (statistical softwares use iterative least squares methods to find

estimates of δ), preventing us from deriving a more general proof on the bias of the TWFE

PPML estimator.

B2 Equivalence of the imputation and saturated approaches

Wooldridge (2023) proposes to recover estimates of ATTs in level which converges to τrs =

yrs(1) − yrs(0) by predicting the average partial effect of the treatment variable Dit over the

desired treated sample, evaluated for the right value of cohort and time dummies. For time
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period and cohorts r, s, it computes:

τ̂inter,rs =E(ŷ|Dit = 1, gis = 1, fst = 1, ∀(k, l) ̸= (r, s) gik = 0; flt = 0)

− E(ŷ|Dit = 0, gis = 1, fst = 1, ∀(k, l) ̸= (r, s) gik = 0; flt = 0)

=N−1
rs

N∑
i=1

Dirs[exp(α̂i + β̂t + δ̂rs) − exp(α̂i + β̂t)]

With Nrs the number of observations for cohort r at time s and Dirs an indicator variable if

the observation belongs to cohort r observed at time s. Again, I can re-write the model to

compute the average partial effect across the entire treated sample with 1{t − r = l} to get

the ATT l time periods after treatment:

τ̂inter,rl = N−1
rl

N∑
i=1

Dirl[exp(α̂i + β̂t + δ̂rl) − exp(α̂i + β̂t)] (.4)

Interestingly, Wooldridge (2023) notes that this quantity is numerically equivalent to the

imputation estimator from equation (3.13) on the same sample. It also has the advantage

to have known analytical expressions for standard errors. As in the previously section, I

propose to scale this quantity by the predicted counterfactual outcome in the absence of

treatment on the same subsample:

R̂oRinter = τ̂inter∑
i∈ω1 ŷigt(0)

= τ̂imput∑
i∈ω1 ŷigt(0)

= R̂oRimput (.5)

In the case with group specific parallel trends, the fully saturated model should write:

E[yipt|giq, ..., giT ] = exp
[ T∑

g=q

βggig +
T∑

s=2
γsfst +

P∑
p=1

1{c = p}κp +
P∑

p=1

T∑
s=2

(fst × 1{c = p})πpt

+
T∑

g=q

T −r∑
l=0

(Dit × gig × 1{t − g = l})δgl

+
P∑

p=1

T∑
g=q

T −r∑
l=0

1{c = p} × (Dit × gig × 1{t − g = l})ζpgl

+ αi + βct

]
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Coefficients γs and πpt control for the group-specific parallel trend. Coefficients δgs and ζpgs

control for the full heterogeneity of the treatment effect, by cohort, group and time. Variables

gig, fst,1{c = s},1{c = s} × fst are dropped because they are colinear with fixed effects αi

and βct, and we are left with the model to estimate:

E[Yipt|giq, ..., giT ] = exp
[ T∑

g=q

T −r∑
l=0

(Dit × gig × 1{t − g = l})δgl

+
P∑

p=1

T∑
g=q

T −r∑
l=0

1{c = p} × (Dit × gig × 1{t − g = l})ζpgl + αi + βct

] (.6)

The average treatment effect ATTinter is estimated as in the simple case, by predicting the

treatement average partial effect on the treated sample. As before, the proportional treatment

effect estimate is:

R̂oRinter = τ̂inter∑
i∈ω1 ŷigt(0)

The mutiplicative parallel trend often holds conditionally on a set of control variables

(assumption A2.B). Wooldridge (2023) explains how to include time-constant controls in

the fully saturated model and keep the equivalence with the imputation estimator:

E(yipt|git, ..., giT ) = exp
[ T∑

s=2
(fstXi)πCt +

T∑
g=q

T −r∑
l=0

(Dit × gig × 1{t − g = l})δgl

+
P∑

p=1

T∑
g=q

T −r∑
l=0

(1{c = s} × Dit × gig × 1{t − g = l})ζpgl

+
P∑

p=1

T∑
g=q

T −r∑
l=0

(Ẋig × Dit × gig × 1{t − g = l})ξgl + αij + βjt

]

Coefficients πCt capture the divergence from the parallel trend due to control variable Xij .

Coefficients ξgl the divergence from the average treatment effect in cohort g at time l due to

variables Xij . Control variables are centered on the treated sample: Ẋ = X − E(X|D =

1). This normalization ensures that δr has the desired interpretation log(E[yr(1)|g = 1]) −

log(E[yr(0)|g = 1]) among the treated. The ATT is recovered as before by predicting average

partial effects of treatment on the desired sample. The idea behind this model is to allow

full heterogeneity in treatment effect across the level of control variables Xi in the sample.
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Limitation to time constant covariates can be quite restrictive, especially if researchers wish

to control for within cohorts time varying shocks that could counfound the treatment effect

estimation. In this case the imputation approach becomes more tractable and general.
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C. Simulations

Figure C1 – Simulations: density
(a) Common treatment timing
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(b) Staggered treatment timing
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Note: Case 1: No heteroskedasticity function of treatment status, no individual treatment effect heterogeneity. Case 2: Heteroskedasticity
function of treatment status, no individual treatment effect heterogeneity. Case 3: No heteroskedasticity function of treatment status, indi-
vidual treatment effect heterogeneity. Case 4: Heteroskedasticity function of treatment status, no individual treatment effect heterogeneity.
Robust log-OLS from Borusyak et al. (2024).
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Figure C2 – Case 1: Event study
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Note: 95% confidence intervals. Case 1: No heteroskedasticity function of treatment status, no individual treatment effect heterogeneity.
To ease the derivation of confidence intervals, I plot log(P T T + 1) for each estimator.

Figure C3 – Case 2: Event study
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Note: 95% confidence intervals. Case 2: Heteroskedasticity function of treatment status, no individual treatment effect heterogeneity. To
ease the derivation of confidence intervals, I plot log(P T T + 1) for each estimator.
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Figure C4 – Case 3: Event study
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Note: 95% confidence intervals. Case 3: No heteroskedasticity function of treatment status, individual treatment effect heterogeneity. To
ease the derivation of confidence intervals, I plot log(P T T + 1) for each estimator.
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A D. Application

Figure D1 – Interaction coefficients (Menkhoff and Miethe, 2019)
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Note: Colors in the legend correspond to the different treated cohorts. Each dot correspond to a coefficient of the interaction from the
aggregation estimator.
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